
Searching

See Section 5.1.3 of the text.

Searching -- looking for the index of an element in a list or
array, is both easier and harder than sorting. It is easy
because there are two standard methods and both are
simple to implement. It is hard because if these don't apply
or aren't efficient, doing something else is very difficult.

We will design our search methods to return -1 in cases when
the list being searched doesn't contain the object being
sought.

The first method is the obvious brute-force technique -- look
through all of the elements for the one you are seeking. If you
find it return its index; if you don't return -1. This is called
LinearSearch:

public static <E extends Comparable< ? super E>>
int linearSearch(E[] a, E x) {

for (int i = 0; i < a.length; i++)
if (x.compareTo(a[i]) == 0)

return i;
return -1;

}

It should be clear that the worst-case performance of this is
O(n), where n is the size of the array or list being searched.

The other standard search method is called
BinarySearch. This requires the list to be sorted. It
plays the classic "High, Low" game -- it starts
looking in the middle of the list If the value being
sought is less than the value in the middle of the
list, the search is continued on the left side of the
list: the portion with indices less than the middle. If
the value being sought is greater than the value in
the middle, the search is continued on the right
side of the list -- the portion with indices greater
than the middle. Of course, if the element being
sought is the one at the middle, we just return the
index of the middle:

public static <E extends Comparable< ? super E>>
int binarySearch(E[] a, E x, int first, int last) {

while (first <= last) {
int mid = (first+last)/2;
if (x.compareTo(a[mid]) == 0)

return mid;
else if (x.compareTo(a[mid])< 0)

last = mid-1;
else

first = mid+1;
}
return -1;

}

Notice that each time we do a comparison that
does not find the element we cut the size of the
search area in half. We can only reduce n by a
factor of 2 log(n) times, so this does no more
than log2(n) comparisons and the running time of
the algorithm is O(log(n)).

What do you do if you need to search a large
amount of data that isn't sorted? This is the
common situation in databases. If the data changes
frequently, there might not be much you can do to
speed up a linear search. Where the data is less
dynamic, database system often build up indexing
structures to allow for something like a binary
search on certain keys even without the data being
sorted.

